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Background: Speech research using lingual ultrasound often 

requires both the ultrasound images as well as audio from the 

corresponding audio speech signals, but synchronization of these 

signals is not always available. We propose that periods of matching 

rates of change in the two signals could be used to align articulatory 

and acoustic signals where synchronization is impossible or would 

otherwise benefit from verification.   

Methods: We analyzed ultrasound (100 fps) and audio recordings 

of 8 English speakers reading real CV(C) words (59 stimuli, 8-9 

repetitions) in the frame “I'm a _____ .” Audio and ultrasound 

streams were synchronized at the time of capture via hardware 

synchronization signal. Each frame of ultrasound data was 

represented as a matrix of pixel brightness values, and articulatory 

change was calculated as the mean of the absolute value of their 

difference matrices over time. Acoustic change was similarly 

calculated as the mean of the absolute value of the difference 

between Mel frequency cepstral coefficients representations of the 

audio recording. Segmental boundaries were determined using the 

Penn Forced Aligner (Yuan and Liberman 2008) on the audio alone. 

Figure 1 shows relative articulatory and acoustic change for the 

utterance “I’m a Lee.” We then calculated the degree of correlation 

between acoustic and articulatory change for windows of 150, 180, 

210, and 240ms. Figure 2 shows these r- and p-values for the same 

utterance. Then we deliberately offset the signals by ±150, ±100, 

±50, ±30, ±20, and ±10 ms to verify that the known synchronization 

results in the best correlations. Figure 3 shows average r-values for 

all data from all subjects. 

Results and discussion: Preliminary results suggest that this 

method is generally successful: offsets closer to zero produce the 

best correlation between signals. Shorter window lengths improve 

alignment, as do restricting analysis of correlations to periods of 

detected speech. 

Conclusions: This method shows promise for future use in aligning 

signals that lack a synchronization pulse. However, for small 

offsets, the differences in correlation coefficient are not very large; 

future work will investigate optimal lengths of speech for 

determining alignment. Ongoing analysis to perfect this tool 

includes determining whether duration of correlation (number of 

windows with high r-values) or overall degree of correlation 

(median r-values) leads to the most accurate alignments.  
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Figure 3: Average correlation between articulatory and acoustic change for different windows (color) 

and offsets between signals (x-axis). Only correlations that are significant (p<0.05) are plotted. Highest 
correlations occur near 0-offset. Offset is in seconds. 

 

Figure 1: Change in acoustics (orange) 
and articulation (blue) for the utterance 

“I’m a Lee.” Time is in seconds. 

 
Figure 2: R- (blue) and p-values (orange) 

of the correlation between the articulatory 
and acoustic signals shown in Figure 1. 


